Instruction Manual

Model 4000 Series

(4050 included)

Vibrating Wire Strain Gages

No part of this instruction manual may be reproduced, by any means, without the written consent of Geokon, Inc.

The information contained herein is believed to be accurate and reliable. However, Geokon, Inc. assumes no responsibility for errors, omissions, or misinterpretation. The information herein is subject to change without notification.

Copyright © 1981-2018 by Geokon, Inc.
(Doc Rev. CC 05/17/18)
Geokon, Inc. warrants its products to be free of defects in materials and workmanship, under normal use and service for a period of 13 months from date of purchase. If the unit should malfunction, it must be returned to the factory for evaluation, freight prepaid. Upon examination by Geokon, if the unit is found to be defective, it will be repaired or replaced at no charge. However, the WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion or current, heat, moisture or vibration, improper specification, misapplication, misuse or other operating conditions outside of Geokon's control. Components which wear or which are damaged by misuse are not warranted. This includes fuses and batteries.

Geokon manufactures scientific instruments whose misuse is potentially dangerous. The instruments are intended to be installed and used only by qualified personnel. There are no warranties except as stated herein. There are no other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and of fitness for a particular purpose. Geokon, Inc. is not responsible for any damages or losses caused to other equipment, whether direct, indirect, incidental, special or consequential which the purchaser may experience as a result of the installation or use of the product. The buyer's sole remedy for any breach of this agreement by Geokon, Inc. or any breach of any warranty by Geokon, Inc. shall not exceed the purchase price paid by the purchaser to Geokon, Inc. for the unit or units, or equipment directly affected by such breach. Under no circumstances will Geokon reimburse the claimant for loss incurred in removing and/or reinstalling equipment.

Every precaution for accuracy has been taken in the preparation of manuals and/or software, however, Geokon, Inc. neither assumes responsibility for any omissions or errors that may appear nor assumes liability for any damages or losses that result from the use of the products in accordance with the information contained in the manual or software.
FIGURES

FIGURE 1 - MODEL 4000 VIBRATING WIRE STRAIN GAGE ... 1
FIGURE 2 - SPACING JIG.. 3
FIGURE 3 - WELDING SEQUENCE FOR THE MOUNTING BLOCKS... 4
FIGURE 4 - PROTECTION ON DRIVEN PILES... 5
FIGURE 5 - INSTALLATION USING EPOXY .. 7
FIGURE 6 - INSTALLATION ON CONCRETE USING GROUTABLE ANCHORS 8
FIGURE 7 - COVER PLATE INSTALLATION, TOP VIEW ... 10
FIGURE 8 - COVER PLATE INSTALLATION, SIDE VIEW .. 10
FIGURE 9 - LIGHTNING PROTECTION SCHEME ... 12
FIGURE 10 - STRAIN GAGES MOUNTED ON CENTRAL WEB ... 14
FIGURE 11 - STRAIN GAGES MOUNTED ON FRAMES ... 15
FIGURE 12 - AXIAL STRAIN MEASUREMENT AND BENDING MOMENT ABOUT YY AXIS ONLY ... 16
FIGURE 13 - AXIAL STRAIN AND BENDING MOMENTS ABOUT XX AXIS 17
FIGURE 14 - AXIAL STRAIN AND BENDING MOMENT AROUND AXIS XX (NOT RECOMMENDED) .. 18
FIGURE 15 - LEMO CONNECTOR TO GK-404 .. 19
FIGURE 16 - GK-405 READOUT .. 20
FIGURE 17 - THREE STRAIN GAGES MOUNTED ON A CIRCULAR PIPE DIAGRAM 35
FIGURE 18 - TWO STRAIN GAGES MOUNTED ONE ABOVE THE OTHER 36

TABLES

TABLE 1 - STRAIN GAGE READOUT POSITIONS.. 22
TABLE 2 - SAMPLE RESISTANCE ... 26
TABLE 3 - RESISTANCE WORK SHEET ... 26
TABLE 4 - SPECIFICATIONS ... 27
TABLE 5 - THERMISTOR RESISTANCE VERSUS TEMPERATURE .. 31

EQUATIONS

EQUATION 1 - AXIAL STRESS CALCULATION ... 14
EQUATION 2 - STRESS DUE TO BENDING ON AXIS YY .. 14
EQUATION 3 - STRESS DUE TO BENDING ON AXIS XX ... 15
EQUATION 4 - MAXIMUM STRESS ... 15
EQUATION 5 - THEORETICAL MICROSTRAIN .. 23
EQUATION 6 - STRAIN CALCULATION ... 23
EQUATION 7 - RESISTANCE TO TEMPERATURE .. 31
EQUATION 8 - READING TO MICROSTRAIN ... 32
EQUATION 9 - GAGE ONLY TEMPERATURE EFFECTS ... 32
EQUATION 10 - TEMPERATURE INDUCED STRESS ... 33
EQUATION 11 - APPARENT STRESS .. 33
EQUATION 12 - LOAD RELATED STRESS .. 33
EQUATION 13 - ACTUAL STRAIN ... 33
EQUATION 14 - THERMAL CONCRETE STRAINS ... 34
EQUATION 15 - ACTUAL STRAIN ... 34
EQUATION 16 - STRAIN DUE TO LOAD CHANGES ONLY ... 34
EQUATION 17 - AVERAGE AXIAL STRAIN ... 35
EQUATION 18 - MAXIMUM BENDING STRAIN ABOUT THE YY AXIS 35
EQUATION 19 - MAXIMUM BENDING STRAIN ABOUT THE XX AXIS 35
EQUATION 20 - MAXIMUM STRAIN .. 35
1. INTRODUCTION

Geokon Model 4000 Vibrating Wire Strain Gages are intended primarily for measuring strain on structural steel members such as tunnel linings, arches, struts, piles, sheet piling, etc. They may also be used to monitor strain changes on concrete or rock surfaces. Attachment to steel surfaces is accomplished by arc welding the mounting blocks to the surface; other surfaces require special mounting blocks with rebar anchors that are grouted into boreholes.

Strains are measured using the vibrating wire principle. A length of steel wire is tensioned between two mounting blocks that are welded to the steel surface being studied. Deformations of the surface will cause the two mounting blocks to move in relation to each other, altering the tension in the steel wire. This change in tension is measured as a change in the resonant frequency of vibration of the wire.

Two coils, one with a magnet insert, the other with a pole piece insert, are located close to the vibrating wire. In use, a pulse of varying frequency (swept frequency) is applied to the coils causing the wire to vibrate primarily at its resonant frequency.

Portable readouts and dataloggers are available from Geokon. These models, when used in conjunction with vibrating wire strain gages, will provide the necessary voltage pulses to pluck the wire. During vibration, a sinusoidal signal is induced in the coils and transmitted to the readout box where it is conditioned and displayed.

This manual contains installation instructions, readout instructions, recommended maintenance, and troubleshooting procedures. The theory of the gage is also given, along with some suggestions for data interpretation.
2. PRELIMINARY CHECKS

A preliminary check should be performed before installing the gage in the field. To perform the preliminary check, complete the following steps:

1) Connect the gage to a readout box by following the instruction in Section 6.

2) Observe the displayed readout. The reading should be around the midrange position as defined in Table 1 in Section 6.4. The temperature reading should match the ambient temperature.

3) Gently pull on the gage end blocks; confirm that digits on the readout rise as the tension increases. **Do not apply excessive tension (> 10 Kgm / 20 lb.), as this may break the vibrating wire!**

Checks of electrical continuity can be made using an ohmmeter. Resistance between the gage leads (usually red and black) should be approximately 180 ohms (50 ohms for model 4050 gages.) Remember to add cable resistance, which is approximately 14.7Ω per 1000 feet (48.5Ω per km) of 22 AWG stranded copper leads at 20 °C. Multiply this factor by two to account for both directions. Resistance between thermistor leads (usually green and white) will vary based on temperature; see Table 5 in Appendix C. Resistance between any conductor and the shield should exceed two megohms.

Should any of these preliminary tests fail, see Section 8 for troubleshooting.
3. INSTALLATION

3.1 Spacing the Mounting Blocks

Geokon Vibrating Wire Strain Gages are held in place by two mounting blocks. Geokon can provide mounting blocks, spacer bars, and spacing jigs for different gage types and installations.

Assemble the mounting blocks onto the spacer bar as follows:

1) Fit the two mounting blocks over the ends of the spacer bar.

2) Position the mounting blocks and spacer bar onto the spacing jig as shown in Figure 2.

![Figure 2 - Spacing Jig](image)

3) Tighten the setscrews in the mounting blocks down onto the spacer bar so that it will not slide back and forth. Avoid excessive tightening which could damage the spacer bar.

4) Remove the completed mounting block and spacer bar assembly from the spacing jig.

3.2 Installation on Steel Surfaces

3.2.1 Welding

Once the correct spacing of the mounting blocks has been set using the spacing jig, the mounting blocks may be welded to the steel surface as follows:

1) Clean the steel using a wire brush; make sure to remove all scale, rust, dirt, and oil.

2) Using the spacer bar as a handle, press the mounting blocks firmly against the steel surface.

3) Weld the edges of the mounting blocks in the order shown in Figure 3.
Avoid excessive heat while welding. **DO NOT WELD THE END SURFACES OF THE MOUNTING BLOCKS;** this will prevent removal of the spacer bar. Avoid welding splatter, which could stick to the spacer bar. When many gages are being installed, it is advantageous to have more than one spacer bar available.

After welding, cool the mounting blocks with a water-soaked rag, then slacken the setscrews and slide out the spacer bar. Clean away all welding slag using a chipping hammer and wire brush. (Optional: Paint over the surface to provide some protection against corrosion). Continue with the installation by proceeding to Section 3.5, Setting the Strain Gage.

3.2.2 Installation on Driven Steel Piles

Strain gages mounted on steel piles need to be protected from being scraped off as the pile is driven into the ground. This can be accomplished by welding 101 x 38 mm (4" x 1.5") channel iron or 64 mm (2.5") or larger angle iron over the top of the gages and cables. See Figure 4 on the following page.

To avoid burning the cables the protection should be welded on before the gages and cables are installed. To accomplish this, leave windows in the steel over the gage locations. It is not necessary to use continuous welds; tack welding is sufficient so long as it holds the angles or channels firmly in place. Cables must be restrained by welding studs at three-meter intervals, which the cables can then be tied to.
In order to prevent shock damage during driving, please observe these additional precautions:

- The mounting blocks must be installed so that the upper mounting block is the one with the single setscrew.

- The setscrews holding the gage inside the mounting blocks must be tightened very tight, use Loctite on the threads.
The coil must be glued onto the flat area of the gage tube. (Use any cyanoacrylate product such as Eastman 910 or Crazy Glue.) Make sure that the cable side of the coil points towards the top of the pile, i.e., towards the end of the gage with the V-groove.

As an added precaution, the hose clamp holding the coil onto the gage must be tightened very tight with a nut driver.

When setting the gages make sure they are reading around 3500 on Channel C. This is very important.

Continue with the installation by proceeding to Section 3.5, Setting the Strain Gage. After the gages are installed, seal the windows by welding a section of the appropriate material over the window.

3.3 Installation using Epoxy Cements

Geokon strain gages can be epoxied to steel or concrete surfaces provided these two factors are strictly observed:

1) Proper care must be taken to clean the surfaces to be bonded.

2) Sufficient time must be allowed for the epoxy to cure before the gages are attached to the mounting blocks.

NOTE: Due to the large number of variables associated with adhesive use (thermal cycles, UV exposure, vibration, impact, moisture, corrosion of base steel, etc.,) epoxy cement is recommended for short term monitoring only.

3.3.1 Concrete Surfaces

Materials needed:
- Devcon Underwater Putty, Mfg. Part# 11800 — Geokon Part# 6201-2
- Loctite 410 Instant Adhesive, Mfg. Part# 41045 — Geokon Part# 4000-15

1) Mix a small quantity of the two part underwater putty. The mix ratio is 1/1.

2) Grind and/or sand the surfaces to be bonded. (This includes both the concrete and the end block surfaces.)

3) Clean surfaces with compressed air or aerosol cleaner.

4) Attach the mounting blocks to the spacer jig, per the instructions in Section 3.1.

5) Apply a thin layer of mixed underwater putty to the center two thirds of the mounting block and a thin layer of 410 instant adhesive to the outside edges of the mounting blocks (see Figure 5).
6) Press the assembly firmly against the surface and hold in place for two minutes.

7) Carefully remove the spacer bar from the mounting blocks.

8) Allow 24 hours curing time before the gages are installed.

9) Continue with the installation by proceeding to Section 3.5, Setting the Strain Gage.

3.3.2 Steel Surfaces

Use Loctite Speedbonder H4500. This can be purchased in a cartridge which automatically dispenses the two-part adhesive in its correct 10/1 mixture. (Adhesive, dispenser, and nozzles are available from Geokon.)

The adhesive reaches its maximum strength in 10 minutes, during which time the mounting blocks should be held to the surface using hand pressure, weights, or magnets.

Continue with the installation by proceeding to Section 3.5, Setting the Strain Gage.

3.4 Installation on Concrete Surfaces Using Anchor Studs

Strains in the surface of concrete can be measured by utilizing special mounting blocks that have reinforcing bar welded to them (Geokon model 4000-5). Attach the strain gage to the concrete surface as follows:

1) Drill two 64 mm (2.5") deep holes in the concrete at the proper spacing, using a minimum 13 mm (1/2") drill bit. (A template is available, Geokon model 4000-11.)

2) Connect the mounting blocks to the spacer bar using the spacer block (see Section 3.1).

3) Grout the rebar studs into the holes using either fast-setting hydraulic cement or a high strength epoxy. Redhead epoxy, type Epcon Ceramic 6 works well.

4) Once the grout has cured, continue with the installation by proceeding to Section 3.5, Setting the Strain Gage.
3.5 Setting the Strain Gage

Mount the strain gage as follows:

1) Slide the strain gage through the mounting blocks. The end of the gage that has the V-groove goes inside the mounting block that has only one setscrew; the smooth end goes inside the mounting block with two setscrews.

2) Tighten hard the setscrew in the mounting block with only one screw.

3) Slide the slot in the coil assembly (located at the end of the instrument cable) over the narrow center of the gage.

4) Connect the gage to the readout box following the instructions in Section 6.

5) Adjusted the reading by pulling or pushing on the free end of the strain gage.

6) Set the initial reading on the gage to the correct level depending on whether compressive or tensile strains are anticipated. Strain gages are shipped with a reading of approximately 3000 to 3500 microstrain. This level is okay for compressive strains. If tensile strains are to be measured, set the initial reading to around 1500 microstrain. The usable range of the strain gage runs from around 1000 to 4000 microstrain. The midrange reading is 2500 microstrain.
7) When the desired reading has been achieved, tighten hard the setscrews in the mounting block with two setscrews.

8) Install the hose clamp over the assembly and tighten using a nut driver.

9) In order to remove any installation strains and stabilize the initial reading, tap on the mounting blocks with a hard plastic tool e.g., the handle of a screwdriver. Continue tapping until the reading remains stable.

It is imperative that an accurate initial zero reading be obtained for each strain gage, as this reading will be used for all subsequent data reduction.

It is preferable to install gages on steel members while they are still in an unloaded condition, i.e., prior to their assembly into the structure. When the initial zero is established in this manner, the initial readings correspond to **zero load**, otherwise, if the member is under load the initial readings will correspond to some unknown load level.

Avoid excessive handling of the gage prior to taking zero readings. Always allow sufficient time for the gage temperature to stabilize before taking a reading. It recommended that the temperature be recorded every time a reading is taken, along with notes concerning the construction activity that is taking place. This data might supply logical reasons for observed changes in the readings. (See also Appendix E and F.)

Each strain gage has a thermistor encapsulated along with the plucking coil. Geokon readout boxes display the temperature directly in degrees Celsius. An ohmmeter can also be used. (The relationship between resistance and temperature is shown in Appendix C.)
4. GAGE PROTECTION

4.1 Protection from Mechanical Damage Using Geokon Model 4000-6

Special cover plates made from sheet steel formed into a channel shape are available from Geokon. Use the mounting hardware provided to install the cover plates as follows:

1) Weld the two 9.5 x 51 mm (3/8 x 2") long hex bolts in place head down. The bolts should be spaced at a nominal 530 mm (21") apart. A spacer jig is available from Geokon, or the cover plate can be flipped onto its back and the holes in the cover plate can be used to mark the bolt locations. One hole in the cover plate is slotted so that the spacing is not critical. Avoid welding anywhere near the gage as this will cause large local distortions of the metal. Either a special stud welder or an arc welder can be used to weld the head of the bolt to the surface.

2) Place the cover plate over the welded bolts

3) Install washers, then nuts. Avoid excessive force while tightening the cover retaining nuts as this will distort the underlying steel surface and can give rise to spurious strain readings. Figure 7 and Figure 8 show the completed installation.
4.2 Protection from Direct Sunlight and Rapid Changes in Ambient Temperature

The thermal coefficient of expansion of the steel vibrating wire inside the gage is the same as that for the steel of the structure to which the gage is attached; therefore, no temperature correction to the measured strain is required when calculating load induced strains. However, this is only true if the wire and the underlying steel structure are at the same temperature. If sunlight is allowed to impinge directly onto the gage, it could elevate the temperature of the wire above the surrounding steel and cause large changes in apparent strain. Therefore, always shield strain gages from direct sunlight. Protection from temperature changes is best provided by covering the gages with a layer of insulating material such as Styrofoam or fiberglass.

4.3 Cable and Connector Protection

The cable should be protected from accidental damage caused by moving equipment or fly rock. This is best accomplished by putting the cable inside flexible conduit and positioning the conduit in as safe a place as possible. (Flexible conduit is available from Geokon.) The conduit can be connected via conduit bulkhead connectors to the cover plates and then to a readout. (The Geokon cover plate has a stamped knockout which when removed provides a hole for connecting the conduit connector.)

4.4 Cable Splicing and Termination

Terminal boxes with sealed cable entries are available from Geokon for all types of applications. These allow many gages to be terminated at one location with complete protection of the lead wires. The interior panel of the terminal box can have built-in jacks or a single connection with a rotary position selector switch. Contact Geokon for specific application information.

Because the vibrating wire output signal is a frequency rather than a current or voltage, variations in cable resistance have little effect on gage readings; therefore, splicing of cables has no ill effects, and in some cases may in fact be beneficial. The cable used for making splices should be a high quality twisted pair type, with 100% shielding and an integral shield drain wire. When splicing, it is very important that the shield drain wires be spliced together. Always maintain polarity by connecting color to color.

Splice kits recommended by Geokon incorporate casts that are placed around the splice and are then filled with epoxy to waterproof the connections. When properly made, this type of splice is equal or superior to the cable in strength and electrical properties. Contact Geokon for splicing materials and additional cable splicing instructions.

Cables may be terminated by stripping and tinning the individual conductors and then connecting them to the patch cord of a readout box. Alternatively, a connector may be used which will plug directly into the readout box or to a receptacle on a special patch cord.

4.5 Protection from Corrosion

Corrosion can be inhibited by applying a coat of rust preventative paint at the weld points.
4.6 Lightning Protection

Unlike numerous other types of instrumentation available from Geokon, vibrating wire strain gages do not have any integral lightning protection components, such as transorbs or plasma surge arrestors.

Suggested Lightning Protection Options:

- If the gage is connected to a terminal box or multiplexer, components such as plasma surge arrestors (spark gaps) may be installed in the terminal box/multiplexer to provide a measure of transient protection. Terminal boxes and multiplexers available from Geokon provide locations for the installation of these components.
- Lighting arrester boards and enclosures are also available from Geokon. These units install where the instrument cable exits the structure being monitored. The enclosure has a removable top to allow the customer to service the components or replace the board in the event that the unit is damaged by a lightning strike. A connection is made between the enclosure and earth ground to facilitate the passing of transients away from the gage. See Figure 9.
- Plasma surge arrestors can be epoxied into the instrument cable, close to the sensor. A ground strap then connects the surge arrester to an earth ground, such as a grounding stake or the steel structure.

Consult the factory for additional information on available lightning protection.

![Figure 9 - Lightning Protection Scheme](image)
5. GAGE LOCATION

5.1 End Effects

To avoid end effects strain gages should be placed away from the ends of struts where they may be influenced by localized clamping or bolting distortions. For most structural members a distance of five feet is sufficient. On the other hand, end effects may be of some interest because they add to the load induced effects, and may be large enough to initiate failure at the ends of the structural member, rather than in the middle.

5.2 Welding Effects

Arc welding close to the gages can cause very large localized strains in the steel member. Thus welding studs onto soldier piles to support lagging, shotcrete reinforcing mesh, etc., can cause big strain changes. This is also true of welding cover plates, protective channels, etc., over the gages and cables. Always take gage readings before and after any arc welding on the steel structure so that corrections can be applied to any apparent strain shifts.

5.3 Bending Moments

In the case of a steel structure, a strain gage measures the strain at one point on the surface, and this would be sufficient if it could be guaranteed that no bending was occurring in the member. In practice, this will only occur near the center of long thin members subjected to tensile loads. Elsewhere, bending moments are the rule rather than the exception, and there will be a neutral axis around which bending takes place.

Since bending effects must be taken into account, more than one strain gage is required at each cross section of the structural member. For a complete analysis at least three gages are required, very often more. On a circular pipe strut three gages spaced 120 degrees apart around the periphery of the strut would suffice (see Appendix G). On an H pile or I-beam, at least four strain gages would are required. On sheet piling, two gages back to back on either side of the pile would be sufficient. (Where a member is subjected to bending and only the front surface is accessible, e.g., a steel tunnel lining or the outside of sheet pilings, the bending moments can be measured by installing two vibrating wire gages at different distances from the neutral axis (see Appendix H).

Consider the example of an I-beam, as shown in Figure 10 on the following page.
Strain Gages mounted on the central web can measure axial strain as well as bending moments around both XX and YY axis. In this configuration, four strain gages (1, 2, 3, and 4 in Figure 10) are welded back to back in pairs on the central web. The gages are at a height (d) above the center of the web (Axis YY) and at a distance (2c) apart. The width of the I-beam flange is represented by 2b and the depth of the web by 2a. (Note: This configuration is not recommended for tunnel arches.)

The axial stress is given by averaging the strain reading from all four strain gages and multiplying by the modulus, as shown in Equation 1.

$$\sigma_{axial} = \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4}{4} \times E$$

Equation 1 - Axial Stress Calculation

The stress due to bending is calculated by looking at the difference between pairs of gages mounted on opposite sides of the neutral axis. Thus, the maximum stress due to bending around Axis YY is given by:

$$\sigma_{yy} = \frac{(\varepsilon_1 + \varepsilon_3) - (\varepsilon_2 + \varepsilon_4)}{2} \times \frac{b}{d} \times E$$

Equation 2 - Stress Due to Bending on Axis YY
The maximum stress due to bending about Axis XX is given by:

$$\sigma_{xx} = \frac{(\varepsilon_1 + \varepsilon_2) - (\varepsilon_3 + \varepsilon_4) }{2} \times \frac{a}{c} \times E$$

Equation 3 - Stress Due to Bending on Axis XX

$$\sigma_{\text{maximum}} = \sigma_{\text{axial}} + \sigma_{xx} + \sigma_{yy}$$

Equation 4 - Maximum Stress

In all of the above calculations, pay strict regard to the sign of the strain. A positive change is tensile and a negative change is compressive.

Note that the total strain, at any point in the cross section, is the algebraic sum of the bending strains and the axial strain. It will be seen that the strains in the outer corners of the flange can be a lot higher than the strains measured on the web, and that failure of the section can be initiated at these points, hence the importance of analyzing the bending moments.

The above consideration would seem to lead to the conclusion that (from the point of view of obtaining the best measurement of the maximum strains) the ideal location for the strain gages would be on the outer corners of the flanges as shown in Figure 11, however, this configuration makes it difficult to protect the gages and cables from accidental damage. In addition, a serious problem can arise from the fact that each of the four gages can be subjected to localized bending forces, which affect only one gage, but not the others. For example, it is not uncommon for welding to take place at points close to a strain gage; this often produces large strain changes in the gage. It is also not uncommon for local blocking (e.g. tunnel arch supports) and the addition of struts, to cause strain changes on a single nearby gage.

![Figure 11 - Strain Gages Mounted on Flanges](image-url)
It is always best to locate gages in pairs, one on each side of the neutral axis corresponding to the section of the I-beam to which the gage is attached. This, along with locating the gages on the web making them much easier to protect, is why the configuration shown previously in Figure 10 is preferable.

If, for reasons of economy, it is decided that only two strain gages per cross-section are to be used, then the configuration shown in Figure 12 may be used. This configuration will give the axial strains and the bending moment around the minor YY axis only.

This configuration allows for easy protection of the instruments and their cables. If desired a hole may be drilled in the web so that the cable from one gage may be passed through to the other side, allowing both cables to be protected by a single conduit.
Another possible two-gage configuration is shown in Figure 13.

This configuration allows the calculation of the axial strains and the bending moment around the major XX axis. A disadvantage lies in that the exposed position of the gages on the outside of the flanges requires a greater degree of protection. Also, local bending at one gage may not be felt by the other gage. A real world example of this was seen when welding on the exposed flange of a soldier pile close to one gage produced large strain changes which were not felt by the other gage on the back side of the pile.
The configuration shown in Figure 14 has been used to allow the calculation of the axial strains, as well as to provide a measurement of the bending moment around the major XX axis. However, any bending around the minor YY axis will affect the reading to some extent. More importantly, there is the risk that one gage can be affected by local bending without affecting the other gage. **This configuration is not recommended.**

![Figure 14 - Axial Strain and Bending Moment About Axis XX (NOT RECOMMENDED)](image)
6. TAKING READINGS

6.1 GK-404 Readout Box

The Model GK-404 Vibrating Wire Readout is a portable, low-power, handheld unit that is capable of running for more than 20 hours continuously on two AA batteries. It is designed for the readout of all Geokon vibrating wire gages and transducers, and is capable of displaying the reading in either digits, frequency (Hz), period (µs), or microstrain (µε). The GK-404 also displays the temperature of the transducer (embedded thermistor) with a resolution of 0.1 °C.

6.1.1 Operating the GK-404

Before use, attach the flying leads to the GK-404 by aligning the red circle on the silver “Lemo” connector of the flying leads with the red line on the top of the GK-404 (Figure 15). Insert the Lemo connector into the GK-404 until it locks into place.

![Figure 15 - Lemo Connector to GK-404](image)

Connect each of the clips on the leads to the matching colors of the sensor conductors, with blue representing the shield (bare).

To turn the GK-404 on, press the “ON/OFF” button on the front panel of the unit. The initial startup screen will be displayed. After approximately one second, the GK-404 will start taking readings and display them based on the settings of the POS and MODE buttons.

The unit display (from left to right) is as follows:

- The current Position: Set by the POS button. Displayed as a letter A through F.
- The current Reading: Set by the MODE button. Displayed as a numeric value followed by the unit of measure.
- Temperature reading of the attached gage in degrees Celsius.

Use the POS and MODE buttons to select the correct position and display units for the model of strain gage purchased (see Section 6.4).

The GK-404 will continue to take measurements and display readings until the unit is turned off, either manually, or if enabled, by the Auto-Off timer.

For more information, consult the GK-404 manual.
6.2 GK-405 Readout Box

The GK-405 Vibrating Wire Readout is made up of two components: The Readout Unit, consisting of a Windows Mobile handheld PC running the GK-405 Vibrating Wire Readout Application; and the GK-405 Remote Module, which is housed in a weatherproof enclosure and connects to the vibrating wire gage to be measured. The two components communicate wirelessly using Bluetooth®, a reliable digital communications protocol. The Readout Unit can operate from the cradle of the Remote Module, or, if more convenient, can be removed and operated up to 20 meters away from the Remote Module.

6.2.1 Connecting Sensors with 10-pin Bulkhead Connectors Attached

Align the grooves on the sensor connector (male), with the appropriate connector on the readout (female connector labeled sensor or load cell). Push the connector into place, and then twist the outer ring of the male connector until it locks into place.

6.2.2 Connecting Sensors with Bare Leads

Attach the GK-403-2 flying leads to the bare leads of a Geokon vibrating wire sensor by connecting each of the clips on the leads to the matching colors of the sensor conductors, with blue representing the shield (bare).

6.2.3 Operating the GK-405

Press the button labeled “POWER ON (BLUETOOTH)”. A blue light will begin flashing, signifying that the Remote Module is waiting to connect to the hand-held unit. Launch the GK-405 VWRA program by tapping on “Start” from the hand-held PC’s main window, then “Programs” then the GK-405 VWRA icon. After a few seconds, the blue light on the Remote Module should stop flashing and remain lit. The Live Readings Window will be displayed on the hand-held PC. Set the Display Mode to the correct letter for the model of strain gage purchased (see Section 6.4). For more information, consult the GK-405 Instruction Manual.
6.3 GK-403 Readout Box (Obsolete Model)

The GK-403 can store gage readings, as well as apply calibration factors to convert readings to engineering units. The GK-403 displays the thermistor temperature in degrees Celsius.

6.3.1 Connecting Sensors with 10-pin Bulkhead Connectors Attached

Align the grooves on the sensor connector (male), with the appropriate connector on the readout (female connector labeled sensor or load cell). Push the connector into place, and then twist the outer ring of the male connector until it locks into place.

6.3.2 Connecting Sensors with Bare Leads

Attach the GK-403-2 flying leads to the bare leads of a Geokon vibrating wire sensor by connecting each of the clips on the leads to the matching colors of the sensor conductors, with blue representing the shield (bare).

6.3.3 Operating the GK-403

1) Turn the display selector to the correct position for the model of strain gage purchased (see Section 6.4).

2) Turn the unit on.

3) A reading will appear in the front display window. (The last digit may change one or two digits while reading.)

4) The thermistor will be read and displayed on the screen above the gage reading in degrees Celsius.

5) Press the “Store” button to record the value displayed.

If the no reading displays or the reading is unstable, see Section 8 for troubleshooting suggestions.

The unit will automatically turn off after approximately two minutes to conserve power.

For more information, consult the GK-403 manual.
6.4 Strain Gage Readout Positions

<table>
<thead>
<tr>
<th>Model</th>
<th>4000</th>
<th>4050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readout Position</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Display Units</td>
<td>microstrain (με)</td>
<td>digits (f²×10⁻³)</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>450-1250 Hz</td>
<td>1400-3200 Hz</td>
</tr>
<tr>
<td>Mid-Range Reading</td>
<td>2500 με</td>
<td>6000 digits</td>
</tr>
<tr>
<td>Minimum Reading</td>
<td>1000 με</td>
<td>2000 digits</td>
</tr>
<tr>
<td>Maximum Reading</td>
<td>4000 με</td>
<td>10000 digits</td>
</tr>
</tbody>
</table>

Table 1 - Strain Gage Readout Positions

6.5 Measuring Temperatures

All vibrating wire strain gages are equipped with a thermistor for reading temperature. The thermistor gives a varying resistance output as the temperature changes. The white and green leads of the instrument cable are normally connected to the internal thermistor.

The GK-403, GK-404, and GK-405 readout boxes will read the thermistor and display the temperature in degrees Celsius.

To read temperatures using an ohmmeter:

1) Connect an ohmmeter to the green and white thermistor leads coming from the strain gage. (Since the resistance changes with temperature are large, the effect of cable resistance is usually insignificant. For long cables a correction can be applied, equal to approximately 14.7Ω per 1000 ft. (48.5Ω per km) at 20 °C. Multiply these factors by two to account for both directions.)

2) Look up the temperature for the measured resistance in Appendix C, Table 5.
7. DATA REDUCTION

Readings on Channel C of Geokon’s readout boxes are displayed directly in microstrain based on the theoretical equation:

\[\mu \varepsilon_{\text{theory}} = 4.062 \times 10^{-3} f^2 \]

Equation 5 - Theoretical Microstrain

Where \(\mu \varepsilon \) is the strain in the wire in microstrain and \(f \) is the resonant frequency of the vibrating wire.

7.1 Conversion of the Readings to Strain Changes

In practice the method of wire clamping effectively shortens the vibrating wire slightly, causing it to over register the strain. This effect is removed by applying the batch gage factor (B) from the calibration report supplied with the gages.

\[\mu \varepsilon_{\text{apparent}} = (R_1 - R_0)B \]

Equation 6 - Strain Calculation

Where \(R_0 \) is the initial reading on Channel C and \(R_1 \) is a subsequent reading.

Note: When \((R_1 - R_0) \) is positive, the strain is tensile.

The value obtained from the above equation is required for computing stresses in equations two through four in Appendix B. The stresses thus computed are the total of those caused by both construction activity and by any temperature change that may have occurred.

7.2 Converting Strains to Stresses

Strain gages measure strain or deformation of the structure, however, the designer is usually more interested in the structural loads or stresses. This requires a conversion from the measured strains to computed stresses.

Strain changes with time are computed from strain gage readings taken at various times, and by comparison with some initial readings taken at time zero. This initial reading is best taken when the structural member is under no load, i.e., the gages should be mounted while the member is still in the steel yard or warehouse.
This is not always possible and often strain gages are installed on members that are under some existing load so that subsequent strain changes will always begin from some unknown datum. However, a technique exists, namely the “Blind Hole Drilling Method” (Photolastic 1977), whereby residual or existing stresses can be measured. The procedure is to cement a strain gage rosette to the surface and then analyze the strains caused by drilling a short blind hole in the center of the rosette. However, it is a well-known fact that strains can be locked into the steel during its manufacture. (Often, the skin of a rolled steel structural member is under tension relative to the underlying steel.)

Sometimes it is possible, especially where temporary supports are being monitored, to measure the strain in the structural member after the structure has been dismantled. This no load reading should agree with the initial no load reading. Any lack of agreement would be an indication of gage zero drift, although the possibility of some permanent plastic deformation of the member should not be overlooked, particularly where measured strains were high enough to approach the yield point.
8. TROUBLESHOOTING

Maintenance and troubleshooting of Model 4000 Vibrating Wire Strain Gages is confined to periodic checks of cable connections and maintenance of terminals. Once installed, the gages are usually inaccessible and remedial action is limited. Should difficulties arise, consult the following list of problems and possible solutions. Return any faulty gages to the factory. **Gages should not be opened in the field.** For additional troubleshooting and support, contact Geokon.

Symptom: Thermistor resistance is too high

- It is likely that there is an open circuit. Check all connections, terminals, and plugs. If a cut is located in the cable, splice according to instructions in Section 4.4.

Symptom: Thermistor resistance is too low

- It is likely that there is a short. Check all connections, terminals, and plugs. If a short is located in the cable, splice according to instructions in Section 4.4.

- Water may have penetrated the interior of the strain gage. There is no remedial action.

Symptom: Strain Gage Readings are Unstable

- Is the readout box position set correctly? If using a datalogger to record readings automatically, are the swept frequency excitation settings correct?

- Is the strain reading outside the specified compressive or tensile range of the instrument? Gage may have become too slack or too tight; inspection of the data might indicate that this is a possibility. Loosen the two oval point setscrews in one of the mounting blocks. This will permit the internal spring to re-tension the gage and the gage will read again. Set the gage to some new datum and retighten the setscrews. If the gage does not respond to resetting, and if the old plucking coil will pluck a new gage, then the gage should be replaced.

- Is there a source of electrical noise nearby? Likely candidates are generators, motors, arc welding equipment, high voltage lines, etc. If possible, move the instrument cable away from power lines and electrical equipment or install electronic filtering.

- Make sure the shield drain wire is connected to ground.

- Does the readout or datalogger work with another gage? If not, it may have a low battery or possibly be malfunctioning.
Symptom: Strain Gage Fails to Read

✓ Does the readout or datalogger work with another gage? If not, it may have a low battery or possibly be malfunctioning.

✓ Is the cable cut or crushed? Check the resistance of the cable by connecting an ohmmeter to the sensor leads. Table 2 shows the expected resistance for the various wire combinations; Table 3 is provided for the user to fill in the actual resistance found. Cable resistance is approximately 14.74Ω per 1000 ft. (48.5Ω per km) of 22 AWG wire. If the resistance is very high or infinite, the cable is probably broken or cut. If the resistance is very low, the gage conductors may be shorted. If a cut or a short is located in the cable, splice according to the instructions in Section 4.4.

| Vibrating Wire Sensor Lead Grid - SAMPLE VALUES |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Red | Black | White | Green | Shield |
| Red | N/A | ≅180Ω | infinite | infinite | infinite |
| | (≅50Ω for model 4050) | | | | |
| Black | ≅180Ω | N/A | infinite | infinite | infinite |
| | (≅50Ω for model 4050) | | | | |
| White | infinite | infinite | N/A | 3000Ω at 25°C | infinite |
| Green | infinite | infinite | 3000Ω at 25°C | N/A | infinite |
| Shield | infinite | infinite | infinite | infinite | N/A |

Table 2 - Sample Resistance

| Vibrating Wire Sensor Lead Grid - SENSOR NAME/## : |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Red | Black | White | Green | Shield |
| Red | | | | | |
| Black | | | | | |
| White | | | | | |
| Green | | | | | |
| Shield | | | | | |

Table 3 - Resistance Work Sheet
APPENDIX A. SPECIFICATIONS

A.1 Vibrating Wire Strain Gage

<table>
<thead>
<tr>
<th></th>
<th>Model 4000</th>
<th>Model 4050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (FS), (nominal)(^1)</td>
<td>3000 (\mu e)</td>
<td>3000 (\mu e)</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.0 (\mu e)</td>
<td>1.0 (\mu e)</td>
</tr>
</tbody>
</table>
| Accuracy\(^2\) | Batch Calibration: ±0.5% FS
 | Individual Calibration: ±0.1% FS
 | Batch Calibration: ±0.5% FS
 | Individual Calibration: ±0.1% FS |
| Zero Stability | 0.02% FS/yr | 0.02% FS/yr |
| Linearity | ±0.5% FS | ±0.5% FS |
| Thermal Coefficient | 12.2 \(\mu e/\degree C\) | 12.2 \(\mu e/\degree C\) |
| Dimensions (gage) | 165 × 12.5 mm (6.5 × 0.50") | 321 × 12.5 mm (12.625 x 0.50") |
| Active Gage Length\(^3\) | 150 mm (5.875") | 300 mm (12") |
| Dimensions (end blocks) (Length × Diameter) | 25 × 22 mm (1 x 7/8") | 25 × 22 mm (1 x 7/8") |
| Dimensions (coil) | 22 × 22 mm (0.875 × 0.875") | Internal |
| Frequency Range | 450 – 1250 Hz | 1400 – 3200 Hz |
| Coil Resistance | 180 \(\Omega\) | 50 \(\Omega\) |
| Temperature Range\(^4\) | -20 to +80 °C | -20 to +80 °C |

Table 4 - Specifications

Notes:
\(^1\) Also available with 5,000 or 10,000 \(\mu e\) range
\(^2\) Using curve fitting techniques, (second order polynomial)
\(^3\) Other lengths available on request
\(^4\) Other ranges available on request

A.2 Thermistor
(see Appendix C also)

Range: -80 to +150 °C
Accuracy: ±0.5 °C

A.3 4000-4 Mounting Blocks

Material: Carbon Steel
Plating: Bright Zinc with Clear Chromate
APPENDIX B. THEORY OF OPERATION

A vibrating wire attached to the surface of a deforming body will deform in a manner similar to that of the body to which it is attached. These deformations alter the tension of the wire, therefore altering its natural frequency of vibration (resonance).

The relationship between frequency (period) and deformation (strain) is described as follows:

1) The fundamental frequency (resonant frequency) of vibration of a wire is related to its tension, length, and mass. The fundamental frequency may be determined by the equation:

\[f = \frac{1}{2L_w} \sqrt{\frac{F}{m}} \]

Where;
\(L_w \) is the length of the wire in inches.
\(F \) is the wire tension in pounds.
\(m \) is the mass of the wire per unit length (pounds, sec.\(^2\)/in.\(^2\)).

2) Note that:

\[m = \frac{W}{L_w g} \]

Where;
\(W \) is the weight of \(L_w \) inches of wire (pounds).
\(g \) is the acceleration of gravity (386 in./sec.\(^2\)).

3) And:

\[W = \rho a L_w \]

Where;
\(\rho \) is the wire material density (0.283 lb./in.\(^3\)).
a is the cross-sectional area of the wire (in.\(^2\)).

4) Combining the equations from steps one, two, and three gives:

\[f = \frac{1}{2L_w} \sqrt{\frac{F g}{\rho a}} \]
5) Note that the tension \(F \) can be expressed in terms of strain, i.e.:

\[
F = \varepsilon_w E_a
\]

Where;
\(\varepsilon_w \) is the wire strain (in./in.).
\(E \) is the Young's Modulus of the wire (30 x 10^6 Psi).

6) Combining the equations from steps four and five gives:

\[
f = \frac{1}{2L_w} \sqrt{\frac{\varepsilon_w E_g}{\rho}}
\]

7) Substituting the given values for \(E \), \(g \), and \(\rho \) yields:

\[
f = \frac{101142}{L_w} \sqrt{\varepsilon_w}
\]

8) On channel 'A', (which displays the period of vibration, \(T \),) multiplied by a factor of 10^6:

\[
T = \frac{10^6}{f}
\]

9) Combining the equations from steps seven and eight gives:

\[
\varepsilon_w = \frac{97.75L_w^2}{T^2}
\]

10) The equation from step nine must now be expressed in terms of the strain in the surface of the body to which the gage is attached. Since the deformation of the body must equal the deformation of the wire:

\[
\varepsilon_w L_w = \varepsilon L_g
\]

Where;
\(\varepsilon \) is the strain in the body.
\(L_g \) is the gage length (in inches).
11) Combining the equations from steps nine and ten gives:

\[\varepsilon = \frac{97.75 \cdot L_w^3}{T^2 \cdot L_g} \]

Where; (for the 4000 strain gage)

- \(L_w \) is 6.25 inches.
- \(L_g \) is 5.875 inches.

12*) Therefore:

\[\varepsilon = 4.062 \times 10^3 \left(\frac{1}{T^2} \right) \]

13*) The display on position “C” of the readout is based on the equation:

\[\varepsilon = 4.062 \times 10^9 \left(\frac{1}{T^2} \right) \]

The squaring, inverting, and multiplication by the factor \(4.062 \times 10^9 \) is all done internally by the microprocessor of the readout, so that the displayed reading on Channel C is given in microinches per inch (\(\varepsilon \)).

*Note that \(T \) is in seconds x 10^6 and \(\varepsilon \) is in microinches per inch

Alternatively;

\(\varepsilon = 4.062 \times 10^{-3} f^2 \) microstrain. Where \(f \) is the frequency in Hz.
APPENDIX C. THERMISTOR TEMPERATURE DERIVATION

Thermistor Type: YSI 44005, Dale #1C3001-B3, Alpha #13A3001-B3

Resistance to Temperature Equation:

\[T = \frac{1}{A + B \ln R + C (\ln R)^3 - 273.2} \]

Equation 7 - Resistance to Temperature

Where;

T = Temperature in °C.
LnR = Natural Log of Thermistor Resistance.
A = 1.4051 \times 10^{-3} \text{ (coefficients calculated over the } -50 \text{ to } +150 \text{ °C. span)}
B = 2.369 \times 10^{-4}
C = 1.019 \times 10^{-7}

<table>
<thead>
<tr>
<th>Ohms</th>
<th>Temp</th>
<th>Ohms</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.1K</td>
<td>-50</td>
<td>16.60K</td>
<td>-10</td>
</tr>
<tr>
<td>187.3K</td>
<td>-49</td>
<td>15.72K</td>
<td>-9</td>
</tr>
<tr>
<td>174.5K</td>
<td>-48</td>
<td>14.90K</td>
<td>-8</td>
</tr>
<tr>
<td>162.7K</td>
<td>-47</td>
<td>14.12K</td>
<td>-7</td>
</tr>
<tr>
<td>151.9K</td>
<td>-46</td>
<td>13.39K</td>
<td>-6</td>
</tr>
<tr>
<td>141.6K</td>
<td>-45</td>
<td>12.70K</td>
<td>-5</td>
</tr>
<tr>
<td>132.2K</td>
<td>-44</td>
<td>12.05K</td>
<td>-4</td>
</tr>
<tr>
<td>123.5K</td>
<td>-43</td>
<td>11.44K</td>
<td>-3</td>
</tr>
<tr>
<td>115.4K</td>
<td>-42</td>
<td>10.86K</td>
<td>-2</td>
</tr>
<tr>
<td>107.9K</td>
<td>-41</td>
<td>10.31K</td>
<td>-1</td>
</tr>
<tr>
<td>101.0K</td>
<td>-40</td>
<td>9.796</td>
<td>0</td>
</tr>
<tr>
<td>94.48K</td>
<td>-39</td>
<td>9.310</td>
<td>-1</td>
</tr>
<tr>
<td>88.46K</td>
<td>-38</td>
<td>8.851</td>
<td>-2</td>
</tr>
<tr>
<td>82.87K</td>
<td>-37</td>
<td>8.417</td>
<td>-3</td>
</tr>
<tr>
<td>77.66K</td>
<td>-36</td>
<td>8.006</td>
<td>-4</td>
</tr>
<tr>
<td>72.81K</td>
<td>-35</td>
<td>7.618</td>
<td>-5</td>
</tr>
<tr>
<td>68.30K</td>
<td>-34</td>
<td>7.252</td>
<td>-6</td>
</tr>
<tr>
<td>64.09K</td>
<td>-33</td>
<td>6.905</td>
<td>-7</td>
</tr>
<tr>
<td>60.17K</td>
<td>-32</td>
<td>6.576</td>
<td>-8</td>
</tr>
<tr>
<td>56.51K</td>
<td>-31</td>
<td>6.265</td>
<td>-9</td>
</tr>
<tr>
<td>53.10K</td>
<td>-30</td>
<td>5.971</td>
<td>10</td>
</tr>
<tr>
<td>49.91K</td>
<td>-29</td>
<td>5.692</td>
<td>11</td>
</tr>
<tr>
<td>46.94K</td>
<td>-28</td>
<td>5.427</td>
<td>12</td>
</tr>
<tr>
<td>44.16K</td>
<td>-27</td>
<td>5.177</td>
<td>13</td>
</tr>
<tr>
<td>41.56K</td>
<td>-26</td>
<td>4.939</td>
<td>14</td>
</tr>
<tr>
<td>39.13K</td>
<td>-25</td>
<td>4.714</td>
<td>15</td>
</tr>
<tr>
<td>36.86K</td>
<td>-24</td>
<td>4.500</td>
<td>16</td>
</tr>
<tr>
<td>34.73K</td>
<td>-23</td>
<td>4.297</td>
<td>17</td>
</tr>
<tr>
<td>32.74K</td>
<td>-22</td>
<td>4.015</td>
<td>18</td>
</tr>
<tr>
<td>30.87K</td>
<td>-21</td>
<td>3.722</td>
<td>19</td>
</tr>
<tr>
<td>29.13K</td>
<td>-20</td>
<td>3.428</td>
<td>20</td>
</tr>
<tr>
<td>27.49K</td>
<td>-19</td>
<td>3.293</td>
<td>21</td>
</tr>
<tr>
<td>25.95K</td>
<td>-18</td>
<td>3.146</td>
<td>22</td>
</tr>
<tr>
<td>24.51K</td>
<td>-17</td>
<td>3.077</td>
<td>23</td>
</tr>
<tr>
<td>23.16K</td>
<td>-16</td>
<td>3.016</td>
<td>24</td>
</tr>
<tr>
<td>21.89K</td>
<td>-15</td>
<td>3.000</td>
<td>25</td>
</tr>
<tr>
<td>20.70K</td>
<td>-14</td>
<td>2.872</td>
<td>26</td>
</tr>
<tr>
<td>19.58K</td>
<td>-13</td>
<td>2.750</td>
<td>27</td>
</tr>
<tr>
<td>18.52K</td>
<td>-12</td>
<td>2.635</td>
<td>28</td>
</tr>
<tr>
<td>17.33K</td>
<td>-11</td>
<td>2.523</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 5 - Thermistor Resistance versus Temperature

<table>
<thead>
<tr>
<th>Ohms</th>
<th>Temp</th>
<th>Ohms</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.6</td>
<td>55.6</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>
APPENDIX D. MODEL 4050 SPECIAL INSTRUCTIONS

The Model 4050 Vibrating Wire Strain Gage is a modified version of the Model 4000 Strain Gage designed for measuring strains over a longer base. The following instructions have been prepared for the standard gage length of 305 mm (12").

The instructions in this manual are applicable to the 4050; however, please be sure to note the following exceptions:

- Model 4050 strain gages require a special spacer bar (Model 4050-8) which is 12 5/8 inches in length.

- Before installing the gage, remove the black protective washer trapped between the tube and the end block with the 'V' groove.

- Model 4050 is read on Channel B of Geokon’s readouts. To set the gage for all tension, the reading should be approximately 2000; for all compression, 10000; for midrange set to 6000. Note: If a CR10 is being used the excitation range 1400 – 3500 Hz should be selected.

- To set the gage, pull or push on the end of the gage tube where the cable exits. (Do not pull on the cable!)

- Convert the position B reading to microstrain using the following equation along with the individual calibration factor (expressed in terms of microstrain/digit) supplied with the instrument.

\[
\text{Microstrain (} \mu e \text{)} = (R_1 - R_0)GF
\]

Equation 8 - Reading to Microstrain

- To correct for temperature effects, for the gage only, the following equation is used.

\[
\text{Microstrain (} \mu e \text{)} = (R_1 - R_0)GF + (T_1 - T_0)K
\]

Equation 9 - Gage Only Temperature Effects

Where:
- \(R_1 \) = current reading (position B)
- \(R_0 \) = initial reading (position B)
- \(T_1 \) = current temperature (°C)
- \(T_0 \) = initial temperature (°C)
- \(K \) = +12.0 microstrain/°C

Note: If the gage is attached to steel the net thermal effect is practically zero. If mounted on concrete, use a \(K \) factor of +2 microstrain/°C

- Other gages lengths are possible with the Model 4050. Consult the factory for additional information.
APPENDIX E. TEMPERATURE EFFECTS

If the ends of the structural member are free to expand or contract without restraint, strain changes can take place without any change in stress. In these situations, the strain gage would show no change in reading. On the other hand, if the ends of a steel structural member are restrained by some semirigid medium, then any increase in temperature of the structural member will result in a buildup of compressive load related strain in the member, even though the actual strain would be tensile.

The magnitude of this temperature induced, compressive stress increase, would be measured accurately by the strain gage because, while the member is restrained from expansion, the vibrating wire is not. The expansion of the vibrating wire would be indicated by a decrease in strain reading on the readout box equal to the temperature-induced increase in compressive stress in the member.

These temperature induced stresses can be separated from any external load induced stresses by reading both the strain and the temperature of the gage at frequent intervals. These readings should take place during a period of time when the external loading from construction activity remains constant. When these strain changes are plotted against the corresponding temperature changes, the resulting graph shows a straight-line relationship, the slope of which yields a factor K_T. This factor can be used to calculate the temperature induced stress, as shown by Equation 10.

$$\sigma_{thermal} = K_T (T_1 - T_0)E$$

Equation 10 - Temperature Induced Stress

If desired this can be subtracted from the observed apparent stress change using Equation 11.

$$\sigma_{apparent} = (R_1 - R_0)BE$$

Equation 11 - Apparent Stress

To give that part of the stress change due to construction activity loads only, use Equation 12.

$$\sigma_{load} = [(R_1 - R_0)B - K_T (T_1 - T_0)]E$$

Equation 12 - Load Related Stress

Note that the correction factor, K_T, may change with time and with construction activity, as the rigidity of the restraint may change. It would then be a good idea to repeat the above procedure in order to calculate a new temperature correction factor.

If, for whatever reason, the actual strain of the steel member is required, (i.e., the change of unit length that would be measured by a dial gage attached to the surface,) this is given by the equation:

$$\mu\varepsilon_{actual} = (R_1 - R_0)B + (T_1 - T_0) \times CF_1$$

Equation 13 - Actual Strain

Where CF_1 represents the coefficient of expansion of steel = +12.2 microstrain/°C.
APPENDIX F. TEMPERATURE CORRECTION WHEN USED ON CONCRETE

In a free field, where no loads are acting, the thermal concrete strains are given by the following equation:

\[\mu \varepsilon_{\text{thermal}} = (T_1 - T_0) \times CF_2 \]

Equation 14 - Thermal Concrete Strains

CF\textsubscript{2} represents the coefficient of expansion of concrete. Unless this figure is known, assume a nominal value of +10.4 microstrain/°C.

If, for whatever reason, the actual strain of the concrete member is required, (i.e., the change of unit length that would be measured by a dial gage attached to the surface,) this is given by the equation:

\[\mu \varepsilon_{\text{actual}} = (R_1 - R_0)B + (T_1 - T_0) \times CF_1 \]

Equation 15 - Actual Strain

Where CF\textsubscript{1} represents the coefficient of expansion of steel = +12.2 microstrain/°C, and (R\textsubscript{1}-R\textsubscript{0})B is the apparent strain recorded by the readout box.

To calculate the strain in the concrete due to load changes only:

\[\mu \varepsilon_{\text{load}} = \mu \varepsilon_{\text{actual}} - \mu \varepsilon_{\text{thermal}} = (R_1 - R_0)B + (T_1 - T_0) \times (CF_1 - CF_2) \]

Equation 16 - Strain Due to Load Changes Only

Note the following example, where B = 0.91
\(R_0 = 3000 \) microstrain, \(T_0 = 20^\circ \text{C} \)
\(R_1 = 2900 \) microstrain, \(T_1 = 30^\circ \text{C} \)

\[\mu \varepsilon_{\text{apparent}} = (2900 - 3000) \times 0.91 = -91(\text{compressive}) \]
\[\mu \varepsilon_{\text{actual}} = (2900 - 3000) \times 0.91 + (30 - 20) \times 12.2 = +31(\text{tensile}) \]
\[\mu \varepsilon_{\text{thermal}} = (30 - 20) \times 10.4 = +104(\text{tensile}) \]
\[\mu \varepsilon_{\text{load}} = (2900 - 3000) \times 0.91 + (30 - 20) \times (12.2 - 10.4) = -73(\text{compressive}) \]

Note: Since assumptions have been made regarding the thermal coefficients for the concrete, these equations should only be used as a general guide.
APPENDIX G. CALCULATIONS FROM THREE STRAIN GAGES, AT 60 DEGREES, ON A CIRCULAR PIPE

Equation 17 - Average Axial Strain

\[A = \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{3} \]

Equation 18 - Maximum Bending Strain Around the YY Axis

\[(X) = \pm \left[\frac{\varepsilon_2 - \varepsilon_3}{1.732} \right] \]

Equation 19 - Maximum Bending Strain Around the XX Axis

\[(Y) = \pm \left[\frac{\left(\frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{3} \right) - \varepsilon_1}{1.732} \right] \]

Equation 20 - Maximum Strain

\[P = \pm X \cos \theta + Y \sin \theta + A \] and \(\tan \theta = Y/X \)

Example:

Let \(\varepsilon_1 = 20 \), \(\varepsilon_2 = 192 \) and \(\varepsilon_3 = 88 \) (all tensile strains)

Average Axial Strain, \(A = \frac{20 + 192 + 88}{3} = +100 \) microstrain tension

\(X = \pm \left(\frac{104}{1.732} \right) = \pm 60 \)

\(Y = \pm \left(\frac{300}{3} - 20 \right) = \pm 80 \)

\(\tan \theta = \frac{80}{60} = 1.333 \) and \(\theta = 53 \) degrees from the X axis

\(P = \pm [60 \times 0.60 + 80 \times 0.8] + 100 = \pm 200 \) microstrain, tensile, +0 microstrain minimum
APPENDIX H. TWO STRAIN GAGES MOUNTED ONE ABOVE THE OTHER

Where only one surface of the straining member is accessible two strain gages can be used, one mounted above the other, in order to separate axial strains from strains due to bending.

![Figure 18 - Two Strain Gages Mounted One Above the Other](image)

\(E_1\) and \(E_2\) are two measured strains at distances \(d_1\) and \(d_2\) from the neutral axis of a steel member (e.g., a sheet pile).

If \(R = d_2/d_1\)

The Axial Strain along the neutral axis = \((RE_1 - E_2)/(R-1)\)

The Bending Strain at a distance \(d_1\) from the neutral axis = \((E_2 - E_1)/(R-1)\)