Modelo 8960-01C

Interfaz Direccionable de **Cuerda Vibrante**

Manual de Instrucciones

DECLARACIÓN DE GARANTÍA

GEOKON garantiza que sus productos estarán libres de defectos en sus materiales y su mano de obra, bajo uso y funcionamiento normal, durante un período de 13 meses a partir de la fecha de compra. Si la unidad no funciona correctamente, debe ser devuelta a la fábrica para su evaluación, con el flete pagado. Una vez que sea examinada por GEOKON, si se determina que la unidad está defectuosa, se reparará o reemplazará sin cargos. Sin embargo, la GARANTÍA SE INVALIDA si la unidad muestra evidencias de haber sido manipulada o de haber sido dañada como resultado de corrosión o corriente, calor, humedad o vibración excesivos, especificaciones incorrectas, mala aplicación, mal uso u otras condiciones de funcionamiento fuera del control de GEOKON. Los componentes que se desgastan o dañan por el uso incorrecto no tienen garantía. Esto incluye los fusibles y las baterías.

GEOKON fabrica instrumentos científicos cuyo uso indebido es potencialmente peligroso. Los instrumentos están diseñados para ser instalados y utilizados solo por personal calificado. No hay garantías, excepto las que se indican en este documento. No existe ninguna otra garantía, expresa o implícita, incluyendo, sin limitación a, las garantías de comercialización implicadas o de adecuación para un propósito en particular. GEOKON no se hace responsable por cualquier daño o perdida causada a otros equipos, ya sea directo, indirecto, incidental, especial o consecuente que el comprador pueda experimentar como resultado de la instalación o uso del producto. La única compensación para el compradorante cualquier incumplimiento de este acuerdo por parte de GEOKON o cualquier incumplimiento de cualquier garantía por parte de GEOKON no excederá el precio de compra pagado por el comprador a GEOKON por la unidad o las unidades, o el equipo directamente afectado por tal incumplimiento. Bajo ninguna circunstancia, GEOKON reembolsará al reclamante por pérdidas incurridas al retirar y/o volver a instalar el equipo.

Se tomaron todas las precauciones para garantizar la exactitud en la preparación de los manuales y/o el software; sin embargo, GEOKON no asume responsabilidad alguna por omisiones o errores que puedan surgir ni asume responsabilidad por daños o pérdidas que resulten del uso de los productos de acuerdo con la información contenida en el manual o software.

No se puede reproducir ninguna porción de este manual de instrucciones, por ningún medio, sin el consentimiento por escrito de geokon. La información contenida en este documento se considera precisa y confiable. Sin embargo, GEOKON no asume responsabilidad alguna por errores, omisiones o malas interpretaciones. La información en este documento está sujeta a cambios sin aviso previo.

ÍNDICE

1. INTRODUCCIÓN	1
2. INSTALACIÓN	2
2.1 PROCEDIMIENTO DE INSTALACIÓN	2
2.2 LIBERACIÓN DE LOS CONDUCTORES DE LOS CONECTORES DI INTERFAZ	
2.3 REQUISITOS DE HARDWARE	4
3. PROTOCOLO RTU DE MODBUS	5
3.1 INTRODUCCIÓN A MODBUS	5
3.2 DESCRIPCIÓN GENERAL DEL PROTOCOLO RTU DE MODBUS	5
3.3 TABLAS DE MODBUS	5
3.4 LECTURA DE SENSORES CON LAS INTERFACES 8960-01C	5
3.5 BARRIDOS DE EXCITACIÓN	Ε
4. MODBUS Y REGISTRADORES DE DATOS DE CAMPBELL SCIENTIFIC	7
4.1 DESCRIPCIÓN	7
4.2 CONVERTIDOR TTL Y/O USB A RS-485 MODELO 8020-38	7
4.3 PROGRAMA DE MUESTRA	8
APPENDIX A. ESPECIFICACIONES	9
APPENDIX B. DERIVACIÓN DE LA TEMPERATURA DEL TERMISTOR	10
B.1 RESISTENCIA DE TERMISTOR PARA 3KΩ	10
B.2 RESISTENCIA DE TERMISTOR PARA 10KΩ	11

FIGURAS

FIGURA 1: INTERFAZ DIRECCIONABLE DE CUERDA VIBRANTE 8960-01C
FIGURA 2: SENSOR CONECTADO A LA INTERFAZ 8960-01C
FIGURA 3: CABLES CORTADOS A DOS PULGADAS
FIGURA 4: TUERCA DEL CABLE
FIGURA 5: TAQUETE DE PLÁSTICO
FIGURA 6: SEPARACIÓN DE LOS CONECTORES PCB
FIGURA 7: CABLE DE BLINDAJE DOBLADO
FIGURA 8: ENSAMBLAJE DEL CONECTOR
FIGURA 9: LIBERACIÓN DE UN CONDUCTOR
FIGURA 10: CAPTURA DE PANTALLA DEL PROGRAMA DEL TERMINAL PC
FIGURA 11: CONVERTIDOR TTL/USB A RS-485 MODELO 8020-38
FIGURA 12: CABLEADO DE DISPOSITIVO DE LECTURA SIN CONVERSIÓN RS-4857
FIGURA 13: CABLEADO DE REGISTRADOR DE DATOS CON CONVERSIÓN RS-485 IN-
CORPORADA

TABLAS

TABLA	1: FUNCIONES DE CABLEADO DEL 8960-01C	. 4
TABLA .	2: ALMACENAMIENTO RAM	. 5
TABLA	3: RESPUESTA DE EJEMPLO - SENSOR #1, PUNTO FLOTANTE DE LA LECTURA DE FRECUENCIA	
TABLA	4: COMANDO DE DISPARADOR DE EJEMPLO - SENSOR #1	. 6
TABLA	5: ESPECIFICACIONES	. 9
TABLA	6: RESISTENCIA DE TERMISTOR PARA 3KΩ	10
TABLA	7: RESISTENCIA DE TERMISTOR PARA 10KΩ	11

INTRODUCCIÓN

La Interfaz Direccionable de Cuerda Vibrante (VW) Modelo 8960-01C de GEOKON hace posible acceder a los sensores de cuerda vibrante con equipos que normalmente no podrían interactuar con un sensor de cuerda vibrante.

La interfaz 8960-01C incluye canales dedicados separados que permiten la lectura de la cuerda vibrante y del termistor integrado en el sensor.

Cuando se conecta con el 8960-01C, el sensor de cuerda vibrante se consulta por medio del protocolo de Unidad Terminal Remota (RTU, por sus siglas en inglés) de Modbus, un estándar en el sector, en una conexión semiduplex simple RS-485. El sensor es estimulado y medido por la interfaz y la medición digitalizada es leída después por un RTU de Modbus sobre el bus RS-485. El acceso a las lecturas se realiza a través de su conexión física en el lector.

FIGURA 1: Interfaz Direccionable de Cuerda Vibrante 8960-01C

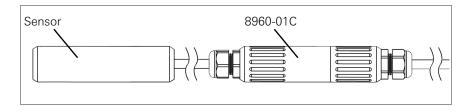


FIGURA 2: Sensor Conectado a la Interfaz 8960-01C

INSTALACIÓN

2.1 PROCEDIMIENTO DE INSTALACIÓN

Para su conveniencia, la Interfaz Direccionable de Cuerda Vibrante (VW) 8960-01C está ensamblado con el cable del dispositivo de lectura ya fijado.

Para conectar su sensor al 8960-01C, conecte el cable de su sensor siguiendo los pasos a continuación:

- Retire entre 2 y 3 pulgadas de la cubierta exterior en uno de los extremos del cable del sensor, exponiendo así los cinco cables individuales.
- 2. Retire todo el aislamiento del cable de blindaje, si es que lo hay.
- Corte los otros cuatro cables para que queden unos 6 mm (0.24") más cortos que el cable de blindaje.
- Retire 6 mm (0.24") del aislamiento de cada uno de estos cuatro cables. Esta longitud costa reduce la posibilidad de un corto circuito.

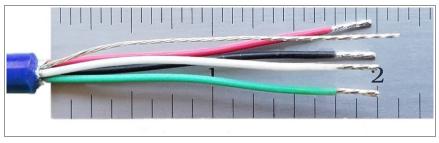


FIGURA 3: Cables Cortados a Dos Pulgadas

- Los extremos de los cables deben estar lo menos desordenados posible (p. ej., retorcidos, estañados, o con casquillo), para facilitar su inserción en los conectores de la interfaz.
- 6. Afloje la tuerca del cable en el extremo abierto del 8960-01C. Vea a continuación.

FIGURA 4: Tuerca del Cable

- Desenrosque la carcasa del instrumento para separar sus dos partes.
- Remueva y guarde el taquete blanco de plástico. Si planea desconectar y guardar la interfaz 8960-01C eventualmente, deberá volver a colocar el taquete para garantizar que la carcasa siga siendo hermética.

FIGURA 5: Taquete de Plástico

- 9. Deslice el cable del sensor a través de la tuerca y la capucha del cable.
- 10. Para un fácil cableado, puede removerse la mitad macho del conector de la mitad hembra, la cual está montada en el tablero del circuito. Para separar ambas mitades, jale la mitad macho con presión constante hasta que se libere. Vea la figura a continuación.

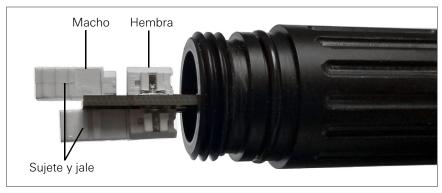


FIGURA 6: Separación de los Conectores PCB

- 11. Inserte el cable de blindaje por el orificio central del conector macho de tres cables. Si el cable de blindaje no es lo suficientemente rígido para penetrar por el orificio central, doble sus últimos 6 mm (0.24") para duplicar su grosor y vuelva a intentarlo. Vea la figura de la izquierda.
 - ¡PRECAUCIÓN! El cable de blindaje debe insertarse en el orificio central del conector macho de tres cables; insertar el cable de blindaje en cualquier otra posición causará corto circuito y podría dañar el sensor y/o la interfaz.
- 12. Inserte los dos cables del termistor (conductores blanco y verde son el estándar en sensores GEOKON) en los orificios a cada lado del cable de blindaje (no importa el orificio que elija).
- 13. Inserte los cables restantes (conductores rojo y negro son el estándar en sensores GEOKON) en el conector de dos cables (no importa el orificio que elija).
- 14. Si separó las mitades macho del conector de las mitades hembra, vuelva a insertarlos en sus contrapartes en el tablero del circuito. Vea la figura a continuación.

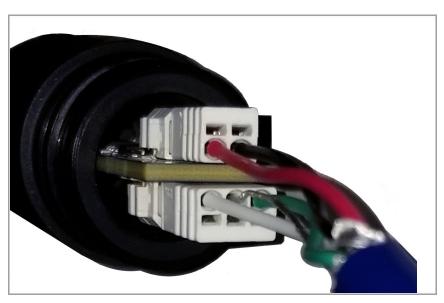


FIGURA 8: Ensamblaje del Conector

FIGURA 7: Cable de Blindaje Doblado

- 15. Jale cuidadosamente cada conductor del cable para asegurarse de que las conexiones sean seguras.
- 16. Enrosque las dos mitades de la carcasa para unirlas.
- 17. Apriete la tuerca de capucha del cable hasta que sujete firmemente la cubierta exterior del cable. Hacer esto asegurará que el agua no entre en la carcasa. (No apriete demasiado la tuerca; hacerlo podría dañar la rosca de plástico.)
- 18. Conecte los cables en el extremo abierto del cable de lectura a la unidad que desea que lea el instrumento.

Las funciones de cableado se muestran a continuación:

8960-01C Color del Conductor	Descripción
Blanco	Comunicación RS-485+
Verde	Comunicación RS-485-
Rojo	Potencia de 12 voltios al conjunto
Negro	Tierra
Protección	Tierra analógica

TABLA 1: Funciones de Cableado del 8960-01C

2.2 LIBERACIÓN DE LOS CONDUCTORES DE LOS CONECTORES **DE LA INTERFAZ**

Para liberar un cable conductor del conector después de haberlo insertado, utilice el destornillador incluido para presionar y mantener la presión en la pestaña que se encuentra justo sobre el extremo estañado del cable, como se muestra en la figura a continuación. Luego, jale el cable que se encuentra debajo del destornillador.

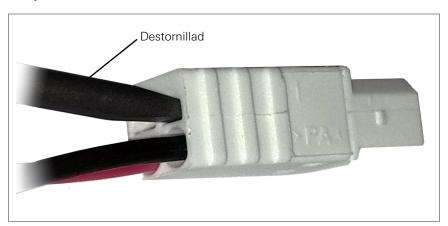


FIGURA 9: Liberación de un Conductor

2.3 REQUISITOS DE HARDWARE

Comunicaciones: RS-485, semiduplex

Tasa de datos: 115,200 baudios

Alimentación: 5V a 15V DC, 57mA (punto más alto)

PROTOCOLO RTU DE MODBUS

3.1 INTRODUCCIÓN A MODBUS

El modelo 8960-01C de GEOKON, utiliza el protocolo de Unidad Terminal Remota (RTU, por sus siglas en inglés) de Modbus, para comunicarse con los registradores de datos. Como su nombre lo sugiere, Modbus se diseñó para trabajar en lo que se conoce como una red bus, lo que significa que todos los dispositivos reciben todos los mensajes que pasan por la red. Los conjuntos del modelo 8960-01C usan la interfaz eléctrica RS-485 por su prevalencia, simplicidad y éxito como capa física robusta e industrial.

Puede encontrar más información acerca de Modbus en la siguiente página de Internet: http://www.modbus.org/specs.php

3.2 DESCRIPCIÓN GENERAL DEL PROTOCOLO RTU DE MODBUS

El Protocolo RTU de Modbus utiliza paquetes (mensajes conformados por múltiples secciones) para comunicar y transferir datos entre dispositivos dentro de la red. El formato general de estos paquetes es el siguiente:

- 1. Dirección Modbus (1 byte) la dirección del dispositivo específico en el bus.
- Código de función (1 byte) la acción a ser realizada por el dispositivo esclavo.
- Datos (múltiples bytes) la carga útil del código de función que se envía.
- Verificación de Redundancia Cíclica o CRC (2 bytes) una verificación de integridad de los datos de 16 bits calculada respecto a los otros bytes en el paquete.

3.3 TABLAS DE MODBUS

Las tablas de Modbus (mapas) definen la ubicación en la memoria de cada interfaz 8960-01C y la información que contienen. Por ejemplo, las lecturas más recientes del sensor se almacenan en una tabla. Esta lectura se presenta en diferentes formatos en secciones distintas de la tabla. La ubicación y el tamaño del registro de estas variables se detalla en la tabla a continuación.

Variable	Tipo	Registro Modbus	Decimal Descripción	
Frecuencia	float32	0x0100	256	Frecuencia medida en Hz
Resistencia	float32	0x0102	258	Termistor medido-resistencia
Disparador	uint16	0x0118	280	Escribir en este registro inicia una muestra

TABLA 2: Almacenamiento RAM

3.4 LECTURA DE SENSORES CON LAS INTERFACES 8960-01C

Si bien el protocolo RTU de Modbus soporta alrededor de 20 diferentes códigos de función, la funcionalidad simple de un sensor de cuerda vibrante con bus elimina la necesidad de todos excepto dos de ellos. Específicamente, el de Predeterminar registro sencillo (0x06) y el de Leer registros de detención (0x03). El código de función **Predeterminar registro sencillo** se utiliza para emitir un comando de "disparador" hacia la interfaz. Esto inicia una secuencia de arranque y lectura. El código de función Leer registros de detención se usa para leer los valores almacenados en los registros de 16 bits del 8960-01C. En este caso, la medición resultante ocupa dos registros de 16 bits. Las lecturas pueden obtenerse como frecuencia (Hz). Un ejemplo de este disparador y la subsecuente consulta se muestra en las Tablas 3 y 4 a continuación.

TX->01 06 0118 00 01 C9 F1	Dirección del disparador #1
RX<-01 06 0118 00 01 C9 F1	Sensor reconoce la escritura simple
espere 370 ms	
TX->01 03 0100 00 02 C5 F7	Obtener el contenido de 2 registros @ 0x0100 (frecuencia de medición)
RX<-01 03 71 58 45 4B 12 7B	Registros = 0x454B7158, 3255.08 Hz
TX->01 03 01 02 00 02 64 37	Obtener el contenido de 2 registros @ 0x0102 (resistencia del termistor)
RX<-01 03 5D 3A 45 51 3A FE	Registros = $0x45515D3A$, 3349.83 Ω

	Dirección del Dispositivo	Código de Función	Dirección de Datos	Datos a Escribir	*CRC
HEX ₁₆	01	06	0118	0001	C9F1
DEC ₁₀	1	6	280	1	51697

TABLA 3: Comando de Disparador de Ejemplo - Sensor #1

La siguiente tabla muestra la respuesta de punto flotante IEEE-754 como dos partes, cada una compuesta por dos bytes. Por cómo se almacena esta información en la memoria, las dos partes se reciben las dos partes en orden inverso. El número completo de punto flotante en HEX es 0x454B7158 (3255.08).

		Dirección del Dispositivo	Código de Función	Conteo de Bytes	16 Bits Inferiores	16 Bits Superiores	*CRC
HE	X ₁₆	01	03	04	7158	454B	127B
DE	EC ₁₀	1	3	4	3255.08		4731

TABLA 4: Respuesta de Ejemplo - Sensor #1, Punto Flotante de la Lectura de Frecuencia

14:20:01.750 [TX] - 01 03 01 00 00 02 C5 F7

14:20:01.860 [RX] - 01 03 04 71 D1 45 4B C3 91

FIGURA 10: Captura de Pantalla del Programa del Terminal PC

Nota: El byte menos significativo (LSB) se envía primero al CRC de Modbus. Al calcular el CRC para la escritura de la dirección 0118 en la Tabla 3 arriba, el algoritmo CRC de Modbus mostrará 0xF1C9 (61897D). Nuestros ejemplos muestran el valor decimal después de que el LSB y el byte más significativo (MSB) son intercambiados.

3.5 BARRIDOS DE EXCITACIÓN

La interfaz modelo 8960-01C está diseñada para excitar y medir todos los transductores de cuerda vibrante GEOKON Detectará automáticamente cualquier frecuencia resonante de entre 400 y 5,000 Hz. No hay configuraciones para el tipo de sensor.

El tiempo para la recepción de datos a partir del envío del disparador es de 370 milisegundos.

4. MODBUS Y REGISTRADORES DE DATOS DE CAMPBELL SCIENTIFIC

4.1 DESCRIPCIÓN

CRBasic es el lenguaje de programación que se usa con todos los registradores de datos CRBasic de Campbell Scientific. Normalmente, se utiliza software LoggerNet de Campbell Scientific cuando se programa en CRBasic.

El registrador CR6 de Campbell Scientific puede comunicarse directamente con la interfaz modelo 8960-01C, utilizando el protocolo RS-485. Sin embargo, los registradores CR1000 y CR800 no soportan el protocolo RS-485. Para adaptarse a esto, GEOKON dispone del convertidor RS-485 a TTL/USB modelo 8020-38.

4.2 CONVERTIDOR TTL Y/O USB A RS-485 MODELO 8020-38

GEOKON fabrica el Convertidor Bus Direccionable Modelo 8020-38 para conectar conjuntos de sensores direccionables a computadoras personales, dispositivos de lectura, registradores de datos y controladores lógicos programables. El convertidor actúa como puente usando los protocolos TTL o USB entre los lectores y los conjuntos de sensores habilitados para RS-485 de GEOKON.

Para obtener más información, consulte el Manual de instrucciones del modelo 8020-38.

FIGURA 11: Convertidor TTL/USB a RS-485 Modelo 8020-38

Nota: El registrador que utilice debe contar con el conector apropiado.

- Si su registrador de datos no cuenta conversión RS-485 incorporada, conecte el cableado usando el diagrama en Figura 12.
- Si su registrador de datos cuenta conversión RS-485 incorporada, conecte conecte el cableado usando el diagrama en Figura 13.

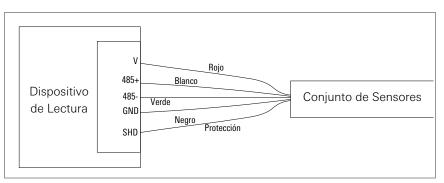


FIGURA 13: Cableado de registrador de datos con conversión RS-485 incorporada

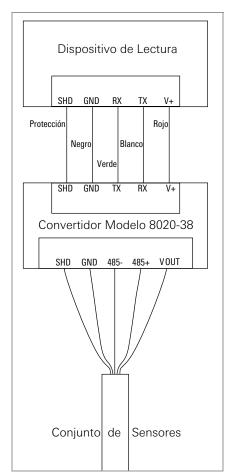


FIGURA 12: Cableado de dispositivo de lectura sin conversión RS-485

4.3 PROGRAMA DE MUESTRA

El siguiente programa utiliza la interfaz Modelo 8960-01C para conectarse directamente a cualquier sensor sencillo de cuerda vibrante GEOKON. La interfaz 8960-01C utiliza los comandos MODBUS RTU y muestra una lectura de frecuencia (Hz) para la cuerda vibrante. Muestra una lectura de resistencia (ohmios) para el termistor.

Nota: Los números de la tabla de registro 8960-01C MODBUS RTU comienzan con **0**. Los registradores de datos de Campbell Scientific reconocen los números de la tabla de registro MODBUS RTU que comienzan por **1**. Todos los números de registro CRBasic son +1. Ejemplo: ModbusMaster no enviará 0x118 a menos que se ingrese "&H119" en la línea de comando.

```
'Define address of the 8960-01C
 Const Address = 1
                              'Address of Interface, used in variable declaration
'Constants used in Steinhart-Hart equation to calculate sensor temperature
'for 3k thermistor
Const A = 1.4051E^{-3}
Const B = 2.369E^{-4}
 Const C = 1.019E^{-7}
 Public ErrorCode
                              'Error Code sent back from ModBus command
 Public Hz(Address)
                              'Frequency (Hz) from incoming data
 Public Digits(Address)
                              'Calculated Digits
                              'Resistance (Ohms) from incoming data
 Public Res(Address)
 Public Celsius(Address)
                              'Calculated temperature (Celsius)
'Define Data Tables
DataTable (Test, 1,-1)
  Sample (Address, Digits(), IEEE4)
  Sample (Address, Celsius(), IEEE4)
 .
EndTable
'Main Program
BeginProg
 Open COMport with RS-485 communications at 115200 baud rate
    en COMport with ks-403 Communications

SerialOpen (ComC1,115200,16,0,50,3) 'CR6 program
'CR1000 program 'CR1000 program
 'Read the interface/sensor every 30 seconds
     Scan (30, Sec, 0, 0)
 'Reset temporary storage for both Resistance and Hz so not to retain
 'previous reading
     Res(Address) = 0
    Hz(Address) = 0
  'Flush Serial between readings
     SerialFlush (ComC1)
  'Write to register 0x118 to trigger interface
  'NOTE: ModbusMaster won't send 0x118 unless "&H119" is entered
    ModbusMaster (ErrorCode, ComC1, 115200, Address, 6, 1, &H119, 1, 1, 10, 0)
  'Delay after triggering the measurement
    Delay (1,1,Sec)
  'Use Modbus command to retrieve Hertz from string
    ModbusMaster (ErrorCode, ComC1, 115200, Count, 3, Hz(Address), &H101, 1, 1, 10, 0)
  'Calculate Digits from Hertz
    Digits(Address) = (Hz(Address)^2)/1000
  'Use Modbus command to retrieve thermistor resistance
    ModbusMaster (ErrorCode, ComC1, 115200, Address, 3, Res(Address), &H103, 1, 1, 10, 0)
  'Calculate thermistor temperature from Ohms to Celsius using Steinhart-Hart
  'equation
     Celsius(Address) = 1/(A+B*LN(Res(Address))+C*LN(Res(Address))^3)-273.15
   Next
 'Call table to store data
 CallTable Test
 NextScan
EndProg
```

APÉNDICE A. ESPECIFICACIONES

Alimentación	
Suministro de alimentación:	5VDC a 15VDC (12V nominal)
Corriente por sensor:	1.2 mA (en reposo)
Corriente máxima:	35 mA (180 Ω bobina VW), 57 mA (50 Ω bobina VW)
Temperatura de funcionamiento:	-40 °C a 80 °C
Comunicación	
Interfaz:	RS-485, semiduplex (diferencial de dos cables)
Protocolo:	RTU de Modbus
Tasa de baudios:	115,200 bits/segundo
Mediciones	
Rango de frecuencia:	400 Hz a 5,000 Hz
Exactitud de frecuencia:	0.082 Hz
Precisión de frecuencia:	0.146 Hz (99% de intervalo de certeza)
Resolución de frecuencia:	> 0.002 Hz
Duración de medición de frecuencia:	< 370 ms
Rango de termistor:	-20 °C a +80 °C
Exactitud del termistor:	±1% (25 °C punto de equivalencia del termistor)
Resolución de temperatura:	10-bit, no linear, 0.6 °C (a -40 °C en el peor de los casos)
Mecánica	
Cable:	4 conductor, 2 pares retorcidos, 6.35 mm (±0.25mm) de diámetro
Carcasa:	100 x 25 mm (L x P)

TABLA 5: Especificaciones

APÉNDICE B. TERMISTOR **DERIVACIÓN DE LA TEMPERATURA DEL**

B.1 RESISTENCIA DE TERMISTOR PARA $3K\Omega$

Tipo de termistor:

- YSI 44005, Dale #1C3001-B3, Alpha #13A3001-B3
- Honeywell 192-302LET-A01

Ecuación para obtener la resistencia a la temperatura:

$$T = \frac{1}{A + B(LnR) + C(LnR^3)} - 273.15$$

ECUACIÓN 1: Resistencia de termistor para 3kΩ

En donde:

T = Temperatura en °C

LnR = Registro natural de la resistencia del termistor

 $A = 1.4051 \times 10^{-3}$

 $B = 2.369 \times 10^{-4}$

 $C = 1.019 \times 10^{-7}$

Nota: Coeficientes calculados entre los -50 y los +150 °C.

Ohmios	Temp.	Ohmios	Temp.	Ohmios	Temp.	Ohmios	Temp.	Ohmios	Temp.
201.1 K	-50	15.72 K	-9	2221	32	474.7	73	137.2	114
187.3 K	-49	14.90 K	-8	2130	33	459.0	74	133.6	115
174.5 K	-48	14.12 K	-7	2042	34	444.0	75	130.0	116
162.7 K	-47	13.39 K	-6	1959	35	429.5	76	126.5	117
151.7 K	-46	12.70 K	-5	1880	36	415.6	77	123.2	118
141.6 K	-45	12.05 K	-4	1805	37	402.2	78	119.9	119
132.2 K	-44	11.44 K	-3	1733	38	389.3	79	116.8	120
123.5 K	-43	10.86 K	-2	1664	39	376.9	80	113.8	121
115.4 K	-42	10.31 K	-1	1598	40	364.9	81	110.8	122
107.9 K	-41	9796	0	1535	41	353.4	82	107.9	123
101.0 K	-40	9310	1	1475	42	342.2	83	105.2	124
94.48 K	-39	8851	2	1418	43	331.5	84	102.5	125
88.46 K	-38	8417	3	1363	44	321.2	85	99.9	126
82.87 K	-37	8006	4	1310	45	311.3	86	97.3	127
77.66 K	-36	7618	5	1260	46	301.7	87	94.9	128
72.81 K	-35	7252	6	1212	47	292.4	88	92.5	129
68.30 K	-34	6905	7	1167	48	283.5	89	90.2	130
64.09 K	-33	6576	8	1123	49	274.9	90	87.9	131
60.17 K	-32	6265	9	1081	50	266.6	91	85.7	132
56.51 K	-31	5971	10	1040	51	258.6	92	83.6	133
53.10 K	-30	5692	11	1002	52	250.9	93	81.6	134
49.91 K	-29	5427	12	965.0	53	243.4	94	79.6	135
46.94 K	-28	5177	13	929.6	54	236.2	95	77.6	136
44.16 K	-27	4939	14	895.8	55	229.3	96	75.8	137
41.56 K	-26	4714	15	863.3	56	222.6	97	73.9	138
39.13 K	-25	4500	16	832.2	57	216.1	98	72.2	139
36.86 K	-24	4297	17	802.3	58	209.8	99	70.4	140
34.73 K	-23	4105	18	773.7	59	203.8	100	68.8	141
32.74 K	-22	3922	19	746.3	60	197.9	101	67.1	142
30.87 K	-21	3748	20	719.9	61	192.2	102	65.5	143
29.13 K	-20	3583	21	694.7	62	186.8	103	64.0	144
27.49 K	-19	3426	22	670.4	63	181.5	104	62.5	145
25.95 K	-18	3277	23	647.1	64	176.4	105	61.1	146
24.51 K	-17	3135	24	624.7	65	171.4	106	59.6	147
23.16 K	-16	3000	25	603.3	66	166.7	107	58.3	148
21.89 K	-15	2872	26	582.6	67	162.0	108	56.8	149
20.70 K	-14	2750	27	562.8	68	157.6	109	55.6	150
19.58 K	-13	2633	28	543.7	69	153.2	110		
18.52 K	-12	2523	29	525.4	70	149.0	111		
17.53 K	-11	2417	30	507.8	71	145.0	112		
16.60 K	-10	2317	31	490.9	72	141.1	113	_	

TABLA 6: Resistencia de termistor para 3kΩ

B.2 RESISTENCIA DE TERMISTOR PARA $10K\Omega$

Tipo de termistor: Sensor US 103JL1A

Ecuación para obtener la resistencia a la temperatura:

$$T = \frac{1}{A + B(LnR) + C(LnR)^3 + D(LnR)^5} - 273.15$$

ECUACIÓN 2: Resistencia de termistor para $10k\Omega$

En donde:

T = Temperatura en °C

LnR = Registro natural de la resistencia del termistor

 $A = 1.127670 \times 10^{-3}$

 $B = 2.344442 \times 10^{-4}$

 $C = 8.476921 \times 10^{-8}$

 $C = 1.175122 \times 10^{-11}$

Nota: Coeficientes optimizados para un termistor curva "J" entre las temperaturas de 0 $^{\circ}$ C y +250 $^{\circ}$ C.

Ohmios	Temp										
32650	0	4917	42	1104	84	333.2	126	124.6	168	54.7	210
31029	1	4725	43	1070	85	324.8	127	122.0	169	53.7	211
29498	2	4543	44	1037	86	316.6	128	119.4	170	52.7	212
28052	3	4368	45	1005	87	308.7	129	116.9	171	51.8	213
26685	4	4201	46	973.8	88	301.0	130	114.5	172	50.9	214
25392	5	4041	47	944.1	89	293.5	131	112.1	173	50.0	215
24170	6	3888	48	915.5	90	286.3	132	109.8	174	49.1	216
23013	7	3742	49	887.8	91	279.2	133	107.5	175	48.3	217
21918	8	3602	50	861.2	92	272.4	134	105.3	176	47.4	218
20882	9	3468	51	835.4	93	265.8	135	103.2	177	46.6	219
19901	10	3340	52	810.6	94	259.3	136	101.1	178	45.8	220
18971	11	3217	53	786.6	95	253.1	137	99.0	179	45.0	221
18090	12	3099	54	763.5	96	247.0	138	97.0	180	44.3	222
17255	13	2986	55	741.2	97	241.1	139	95.1	181	43.5	223
16463	14	2878	56	719.6	98	235.3	140	93.2	182	42.8	224
15712	15	2774	57	698.7	99	229.7	141	91.3	183	42.1	225
14999	16	2675	58	678.6	100	224.3	142	89.5	184	41.4	226
14323	17	2579	59	659.1	101	219.0	143	87.7	185	40.7	227
13681	18	2488	60	640.3	102	213.9	144	86.0	186	40.0	228
13072	19	2400	61	622.2	103	208.9	145	84.3	187	39.3	229
12493	20	2316	62	604.6	104	204.1	146	82.7	188	38.7	230
11942	21	2235	63	587.6	105	199.4	147	81.1	189	38.0	231
11419	22	2157	64	571.2	106	194.8	148	79.5	190	37.4	232
10922	23	2083	65	555.3	107	190.3	149	78.0	191	36.8	233
10450	24	2011	66	539.9	108	186.1	150	76.5	192	36.2	234
10000	25	1942	67	525.0	109	181.9	151	75.0	193	35.6	235
9572	26	1876	68	510.6	110	177.7	152	73.6	194	35.1	236
9165	27	1813	69	496.7	111	173.7	153	72.2	195	34.5	237
8777	28	1752	70	483.2	112	169.8	154	70.8	196	33.9	238
8408	29	1693	71	470.1	113	166.0	155	69.5	197	33.4	239
8057	30	1637	72	457.5	114	162.3	156	68.2	198	32.9	240
7722	31	1582	73	445.3	115	158.6	157	66.9	199	32.3	241
7402	32	1530	74	433.4	116	155.1	158	65.7	200	31.8	242
7098	33	1480	75	421.9	117	151.7	159	64.4	201	31.3	243
6808	34	1432	76	410.8	118	148.4	160	63.3	202	30.8	244
6531	35	1385	77	400.0	119	145.1	161	62.1	203	30.4	245
6267	36	1340	78	389.6	120	142.0	162	61.0	204	29.9	246
6015	37	1297	79	379.4	121	138.9	163	59.9	205	29.4	247
5775	38	1255	80	369.6	122	135.9	164	58.8	206	29.0	248
5545	39	1215	81	360.1	123	133.0	165	57.7	207	28.5	249
5326	40	1177	82	350.9	124	130.1	166	56.7	208	28.1	250
5117	41	1140	83	341.9	125	127.3	167	55.7	209		

TABLA 7: Resistencia de termistor para 10kΩ

